Szeptember - 2018
H K S C P S V
  01 02
03 04 05 06 07 08 09
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 27 28 29 30

Tantárgy adatlap

Cooperative Games and Decisions

Tantárgy adatlap letöltése: Letöltés

A tantárgy kódja: KOZNXOPKU01
A tantárgy megnevezése (magyarul): Cooperative Games and Decisions
A tantárgy neve (angolul): Cooperative Games and Decisions
A tanóra száma (Előadás + szeminárium + gyakorlat + egyéb): 2+2
Kreditérték: 6
A tantárgy meghirdetésének gyakorisága: spring semester
Az oktatás nyelve: English
Előtanulmányi kötelezettségek: --
A tantárgy típusa: elective
Tantárgyfelelős tanszék: Operációkutatás és Aktuáriustudományok Tanszék
A tantárgyfelelős neve: Dr. Solymosi István Tamás

A tantárgy szakmai tartalma: Cooperative games are mathematical models of multi-player decision situations, where the players can form coalitions, if by working together they can achieve more than by acting separately. The main question is how to distribute the benefits of cooperation among the players that is made possible by their appropriately coordinated joint actions.
The course gives an introduction to the theory and possible applications of cooperative games. Various types of multi-player decision situations (e.g. markets, profit/cost sharing in joint enterprises, asset/debt allocations in bankruptcy, voting) will be discussed not only to motivate the study of their abstract cooperative game models, but also to illustrate the rigorously presented basic theoretical results of the field.

Évközi tanulmányi követelmények: Solution of the assigned homework problems for practice are strongly recommended. Students might also volunteer to present published articles on applications.

Vizsgakövetelmény: Final written exam maybe followed by oral exam exam for grade improvement.

Az értékelés módszere: Written exam (75 %), oral exam (25 %, the voluntary article presentation is taken into account)

Tananyag leírása: Week 1: Cooperative decision situations. Matching situations with ordinal preferences. Stable bipartite matchings. The Gale – Shapley algorithm.
Week 2: More on stable bipartite matchings.
Week 3: Cooperative games, Classes of transferable utility games. Types of payment allocations.
Strategic equivalence of games. Normalization.
Week 4: The core. Nonemptiness of the core and balancedness. The Bondareva - Shapley theorem.
Week 5: Computing core allocations in special types of games.
Week 6: The core in simple games. Veto players in voting situations.
Week 7: The Shapley-value and its axiomatic characterization.
Week 8: Convex games. The core and the Weber-set, the Shapley – Ichiishi theorem.
Week 9: The least core and the (pre)nucleolus. Dual characterization by balanced families of coalitions. Bankruptcy games and the Talmud rule.
Week 10: Monotonicity of value solutions.
Week 11: Cost games. Principles of fair and stable cost allocations.
Week 12: Cost and profit allocation applications of cooperative games.
Week 13: Review

Órarendi beosztás: 2 hours lecture + 2 hours seminar / week

Kompetencia leírása: The course aims to give an introduction to the basic theory and possible applications of cooperative games, and to prepare the students to be able to recognize, formulate, and analyze various types of multi-player decision situations by applying cooperative game models and solutions.

Félévközi ellenőrzések: Regular attendance and active participation is expected.

A hallgató egyéni munkával megoldandó feladatai: Solution of the regularly assigned practice problems, on a voluntary basis.

Szak neve: Advanced Bachelor / Master level

Irodalomjegyzék:
Kötelező irodalom:

  • Lecture notes prepared by the instructor and handouts

Ajánlott irodalom:

  • H. Peters: Game Theory: A Multi-Leveled Approach, Springer, Berlin, 2008.
Ajánlott irodalmak:
H. Peters: Game Theory: A Multi-Leveled Approach, Springer, Berlin, 2008.
Kötelező irodalmak:

 
A tantárgy oktatói:

Utolsó módosítás: 2018-02-01 22:44:52

Kurzusok

Kurzus kódTipusFélévOktatói


A "Tantárgyfelelős tanszék", a tantárgyfelelős neve a tantárgy oktatói és a kurzusinformációk automatikusan frissülnek a tanulmányi rendszerünk alapján.